
Theor Chem Acc (2007) 117:915–931
DOI 10.1007/s00214-006-0210-5

REGULAR ARTICLE

Electron-transfer in molecular functional materials

Anna Painelli · Francesca Terenziani ·
Zoltán G. Soos

Received: 20 June 2006 / Accepted: 13 October 2006 / Published online: 22 December 2006
© Springer-Verlag 2006

Abstract We discuss electron-transfer processes that
govern the physics of several materials or systems of
interest for advanced applications. The discussion
touches upon several topics, ranging from solvatochro-
mism to solvent-induced symmetry breaking, from exci-
tonic to cooperative effects in molecular crystals, from
phase transitions to vibrational contributions to the
dielectric constant in organic materials, from spectros-
copy to molecular transport. In all these diverse systems
electron transfer (ET) plays a major role and is discussed
with reference to simple models for delocalized charges.

Keywords Electron transfer · Non-linear optics ·
Molecular transport · Molecular junctions ·
Polarization and polarizability · Charge-transfer salts ·
Organic chromophores · Solvatochromism ·
Absorption and fluorescence spectroscopy

1 Introduction

Electron-transfer (ET) is a fundamental process in
chemistry and biology and is the key process in organic
electronics in its wide context. Understanding
molecular junctions, photoconversion devices, organic
light-emitting devices, just as an example, requires a
thorough understanding of ET. ET describes the
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motion of an electron between different sides of the
same molecule (intramolecular ET) or between differ-
ent molecules (intermolecular ET). In either case an
electric charge moves along a sizeable distance: ET pro-
cesses generate large electric fields and are strongly
affected by electric fields. This simple consideration
explains why materials with delocalized electrons, i.e.
materials where ET plays a basic role, are so interesting
for non-linear optics (NLO): an applied electric field
in fact displaces delocalized electrons leading to large
response fields and hence to non-linear behavior. Elec-
tric fields need not to be applied from the outside: large
fields can be experienced by electrons inside a mate-
rial as due to their interaction with surrounding charges.
These environmental electric fields affect the ET process
in the material, leading to important phenomena.

Here we discuss ET processes occurring in several
materials of interest for advanced applications. In the
next section intramolecular ET is investigated in so
called quadrupolar chromophores, a class of π-conju-
gated molecules with two donor (D) groups joined by
π-bridge to a central acceptor (A) core leading to linear
centrosymmetric DAD structures (of course the dis-
cussion also applies to ADA structures). These mole-
cules, widely studied for two-photon absorption (TPA)
applications, are characterized by a fairly complex spec-
troscopic behavior [1,2]. Here we discuss how the inter-
action between ET and vibrational and/or solvation
degrees of freedom can induce symmetry breaking in
the ground or excited state, and ascribe the unusual
spectroscopic behavior of these dyes in solution to this
phenomenon.

In the third section we discuss the role of intermo-
lecular electrostatic interactions in clusters of polar DA
chromophores. These molecules, also called push–pull
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chromophores, are an interesting class of molecules with
applications in molecular photonics and electronics [3].
In aggregates, films or crystals, push-pull chromophores
pack with negligible intermolecular overlap, but electro-
static intermolecular interactions are strong. The intra-
molecular ET process occurring at different locations
amplifies the effects of intermolecular electrostatic inter-
actions, so that the motion of an electron in a mole-
cule actually affects ET processes at nearby (and not so
nearby) molecules. Resulting collective and cooperative
effects dominate the physics of these systems that repre-
sent interesting model systems to investigate the role of
classical electrostatic interactions on intramolecular ET.

In the fourth section we will discuss charge-transfer
(CT) crystals with a mixed stack motif [4]. In these mate-
rials electron donors such as tetrathiafulvalene (TTF)
and electron acceptors such as chloranil (CA) alter-
nate to form one-dimensional (1D) stacks. The frontier
orbitals on adjacent molecules overlap significantly as
testified by the fractional average ionicity on the molec-
ular sites. Much as with push–pull or quadrupolar chro-
mophores, the low-energy physics of these materials is
governed by ET. But in CT salts ET is intermolecular
and leads to delocalized electrons in the stack direc-
tion. Charge and lattice instabilities dominate the phys-
ics of these materials and require fairly complex models
accounting for delocalized electrons in 1D, electrostatic
interactions in 3D and electron–phonon coupling.

Section 5 shortly summarizes a recent view of elec-
tron transport in molecular junctions. ET represents of
course the basic process in molecular transport, but in a
molecular junction we want a continuous flux of electri-
cal charge that holds for a long (infinite) time. In other
terms, molecular junctions are driven systems and work
in non-equilibrium steady state conditions [5]. We will
present a simple approach to the problem based on a
real-space description of the junction, that lead to a
chemically appealing view of the molecule as an elec-
trical circuit with the current flowing through chemical
bonds.

2 Environmental effects on ET systems: solvent
induced symmetry breaking in quadrupolar (DAD)
chromophores

Intramolecular ET dominates the low-energy physics of
dipolar (DA), quadrupolar (DAD) or multipolar (ADn)

chromophores for NLO applications. In these systems
an electron-acceptor (A) is linked to one or more elec-
tron-donor (D) groups (of course the D and A may be
exchanged leading to structures like ADA or
DAn). Charge-resonance few-state models have been

successfully applied to describe these systems: their
electronic structure, as far as low-energy properties are
concerned, can in fact be described based on few elec-
tronic states that correspond to the main resonating
structures of the chromophore. The prototypical model
for the polar DA chromophore is the famous two state
model by Mulliken [6,7]. This model, extended to
account for the coupling of electronic and vibrational
degrees of freedom, has been successfully applied to
describe linear and non-linear optical responses of this
class of chromophores [8,9]. A further extension to
account for the interaction with polar solvents allowed
a detailed study of the solvent-dependence of electronic
and vibrational spectra [10,11].

Quadrupolar and multipolar chromophores have no
permanent dipole moments, neither in the ground nor
in the excited states, and, on this basis, one would expect
negligible spectroscopic effects of the solvent polarity.
However, several chromophores show a strongly solva-
tochromic fluorescence [2,13–15], a phenomenon that
has not been fully understood, so far. Here we focus
on quadrupolar DAD chromophores and, based on a
charge-resonance model, demonstrate that electron-
vibration coupling and/or polar-solvation can induce
symmetry breaking in either the excited or the ground
state of DAD chromophores, leading to unusual spec-
troscopic behavior [12].

In the spirit of the Mulliken model [6,7], the charge
resonance model for quadrupolar chromophores is writ-
ten on the basis of three orthogonal states: |N〉, the
neutral state, corresponding to the DAD structure, and
two degenerate states, |Z1〉 and |Z2〉, corresponding to
the two zwitterionic structures D+A−D and DA−D+,
respectively. We define 2η as the energy difference
between the two degenerate zwitterionic states and the
neutral state, so that for positive η the neutral form is
lower in energy than the zwitterionic forms, whereas the
opposite occurs for negative η. The mixing between the
states is described by an off-diagonal matrix element in
the Hamiltonian, 〈N|H|Z1〉 = 〈N|H|Z2〉 = −√

2t, that
measures the probability of electron transfer from D to
A and backwards. The two zwitterionic states have large
dipole moments, µ0, pointing in opposite directions. This
is by far the largest matrix element of the dipole moment
operator in the chosen basis: all other matrix elements
of the dipole moment operator will be disregarded.

By exploiting inversion symmetry, we combine the
zwitterionic states in symmetric and antisymmetric

wavefunctions: |Z+〉 = (|Z1〉 + |Z2〉)
/√

2 and |Z−〉 =
(|Z1〉 − |Z2〉)

/√
2 , respectively. The N state is even, so

that it only mixes to |Z+〉. On the symmetrized basis, the
following three operators are conveniently defined:
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ρ̂ = |Z+〉 〈Z+| + |Z−〉 〈Z−|
δ̂ = |Z+〉 〈Z−| + |Z−〉 〈Z+| (1)

σ̂ = |Z+〉 〈N| + |N〉 〈Z+|
where σ̂ mixes the two gerade states, and the two oper-
ators ρ̂ and δ̂ define the charge distribution in the mole-
cule: ρ̂ = ρ̂1 + ρ̂2 is the average charge on the central A
site, sum of the charges on the two external D sites;
δ̂ = ρ̂1 − ρ̂2 instead measures the charge unbalance
on the two external (D) sites. In terms of these oper-
ators, the representative matrices of the Hamiltonian
and dipole moment operators are

Hel = 2ηρ̂ − 2tσ̂ ; µ̂ = µ0δ̂. (2)

The eigenstates of the Hamiltonian are

|g〉 = √
1 − ρ |N〉 + √

ρ |Z+〉
|a〉 = |Z−〉 (3)

|e〉 = √
ρ |N〉 − √

1 − ρ |Z+〉
where ρ is the ground state expectation value of ρ̂. Its
value is fixed by the model parameters, as follows:

ρ = 0.5
(

1 − η

/√
η2 + 4t2

)
(4)

The charge distribution in the ground state can be rep-
resented as D+0.5ρA−ρD+0.5ρ , so that ρ measures the
fractional charge on the central A site, i.e. the quad-
rupolar moment in the ground state. The operator δ̂,
proportional to the dipole moment operator, breaks the
inversion symmetry and has vanishing expectation val-
ues in all states.

Relevant transition energies and dipole moments can
be expressed in terms of ρ:

–hωga = εa − εg = 2t

√
1 − ρ

ρ
; µga = 〈g| µ̂ |a〉 = µ0

√
ρ

–hωge = εe − εg = 2t

√
1

ρ(1 − ρ)
; µge = 〈g| µ̂ |e〉 = 0

–hωae = εe − εa = 2t
√

ρ

1 − ρ
; µae =〈a| µ̂ |e〉=µ0

√
1 − ρ

(5)

The odd a state in Eq. (3) is allowed in one-photon
absorption (OPA), while the even e state is allowed in
two-photon absorption (TPA). For large positive
η (ρ → 0) the one- and two-photon excitations become
degenerate. In the opposite limit of large and negative
η (ρ → 1) the OPA energy goes to zero (the ground
state becomes degenerate) whereas the TPA state has a
higher energy (∼ −2η). The other notable case is η = 0,
where ρ = 0.5, and the ground, OPA and TPA states are
equally spaced in energy.

The coupling between electronic and vibrational
degrees of freedom accounts for the different geome-
try associated with the neutral and zwitterionic states,
much as it occurs for polar D-π -A chromophores [7].
The charge rearrangement from N to Z1 or to Z2 states
occurs along the two different arms of the quadrupolar
molecule, so that we introduce two effective coordinates,
q1 and q2, describing the nuclear motion in each arm.
The two coordinates, equivalent by symmetry, have the
same harmonic frequency, ω. Introducing the symmetric
and antisymmetric coordinates:

q+ = 1√
2
(q1 + q2); q− = 1√

2
(q1 − q2) (6)

and the conjugate momenta, p+ and p−, linear electron-
vibration coupling is described by

H = Hel − √
εvωq+ρ̂ − √

εvωq−δ̂

+1
2

(
ω2q2+ + p2+

)
+ 1

2

(
ω2q2− + p2−

)
(7)

where εv measures the vibrational relaxation energy, and
is related to electron–vibration coupling.

In the adiabatic approximation the vibrational kinetic
energy in the above equation is neglected, to define
an electronic Hamiltonian that depends on the nuclear
coordinates. Since q− mixes states with different sym-
metry, the diagonalization of the adiabatic Hamiltonian
goes through the diagonalization of a 3 by 3 matrix.
The resulting adiabatic eigenvalues, function of q+ and
q−, define the potential energy surfaces (PES) for the
nuclear motion.

Stable eigenstates with respect to symmetry breaking
show a single minimum located at q− = 0 and at finite

q+ = √
εv〈ρ〉/ω, where 〈ρ〉 is the expectation value of �

ρ

in the relevant state. Unstable eigenstates instead show a
double minimum structure: the symmetrical q− = δ = 0
solution corresponds to a saddle point and two equiva-
lent minima are found at finite and opposite q− values
(q− = ±√

εv〈δ〉/ω), corresponding to two stable states

with equal and opposite dipole moment ±µ0

〈
δ̂
〉
.

Figure 1 shows the phase diagram for D–π–A–π–A
dyes. The stability of the electronic state is defined by the(
∂2E/∂q2−

)
q−=0: the boundaries in Fig. 1 just mark the

points where either the ground or the first excited state
curvature changes its sign. Chromophores in the central
region (II in the figure), have intermediate quadrupo-
lar moment (ρ ∼ 0.3–0.6), and do not show symmetry
breaking in any state: they are truly non polar chro-
mophores. The left region (I), describes chromophores
with low quadrupolar moment (ρ <∼ 0.2): these sys-
tems always have a non-dipolar ground state, but the
one-photon allowed state, a, is bistable for sufficiently
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I

II

III

Fig. 1 Phase diagram for quadrupolar chromophores; region I
corresponds to systems with a stable ground state and bistable OP
state; in region II all PES have a single minimum; for region III
the ground state PES has a double minimum. Crosses mark points
corresponding to calculation of spectra in Fig. 3. The boundaries
represents the lines where the curvature along the q− coordinate
at q− = 0 vanishes for the g and a states

large εv. For class I chromophores both the ground state
and the TP-allowed state, e, are non-dipolar, but the
OP-allowed state is bistable and relaxes towards a polar
state. In the third region of the phase diagram (III),
relevant to systems with a large quadrupolar moment
(ρ → 1) and large enough εv, both excited states are
stable, but the ground state is bistable. This behavior is
easily understood: for ρ → 0 the ground state corre-
sponds to the almost pure N state, and the two excited
states correspond to Z− and Z+. In this limit Z− and
Z+ are almost degenerate and whatever tiny εv induces
a symmetry breaking in the excited state. In the ρ → 1
limit, Z− and Z+ are lower in energy than N, and the
ground state almost coincides with Z+. The ground state
is therefore almost degenerate with the optically allowed
state (Z−) leading to a charge-instability of the ground
state itself.

Of course the calculation of a double minimum PES
does not guarantee for true symmetry breaking in a finite
size system, in fact symmetry can be restored by the
fast switching (tunneling) of the system between the
two minima [16,17]. Here we concentrate on the cal-
culation of optical spectra and, to avoid any ambiguity
about possible false symmetry-breaking in the adiabatic
solution, we calculate all spectra from direct diagonal-
ization of the non-adiabatic electron-vibration Hamilto-
nian [9,12,18].

Solvent effects must be accounted for to describe
optical spectra in solution [20]. In the spirit of continuum
solvation models, and adopting exactly the same
approach originally developed for polar DA chromo-

phores [10–12], we account for polar solvation, in the
framework of the reaction-field approach. Treating the
solvent as an elastic medium, the relevant Hamiltonian
reads [10]:

Hsolv = −µ0FRδ̂ + µ2
0

4εor
F2

R, (8)

where FR measures the reaction field, whose equilib-
rium value is proportional to the solute’s dipole moment:

F(eq)

R = (
2εor/µ

2
0

)〈�
µ

〉
. Here

〈
µ̂

〉
is the expectation value

of the dipole moment operator, µ̂ = µ0δ̂. The solvent
relaxation energy, εor, measures the energy gained by
solvent relaxation in the N → Z1/2 process. FR cou-
ples to the same dipolar operator, δ̂, as the q− coordi-
nate so that dipolar solvation cooperates with vibrational
coupling to enforce symmetry breaking and dipolar
distortion.

To better understand the role of polar solvation in
driving symmetry-breaking, Fig. 2 shows isoenergy lines
for the PES relevant to the a state of a chromophore of
class I with ρ ∼ 0.1 and εv = 0.4: even in the non-polar
solvent (εor = 0, left panel) the PES shows a double
minimum. In the presence of polar solvation (εor > 0,
right panel), three slow (adiabatic) coordinates must be
accounted for (q+, q− and FR): for graphical reasons we
show the isoenergy lines as a function of q+ and q−,
while keeping FR fixed at its local equilibrium value for
the a state (FR = (2εor/µ0)〈a|δ̂|a〉). Already in slightly
polar solvents (small εor), a sizeable stabilization of the
polar symmetry-broken states is found (of course a sec-
ond equivalent minimum is found for opposite FR and
〈a|δ̂|a〉values), suggesting a strongly solvatochromic flu-
orescence also in weakly polar solvents.

It is important to realize that the vertical excited state
always maintains the symmetry of the ground state, so
that for class I chromophores for which a centrosym-
metric ground state is expected, absorption spectra are
not affected by polar solvation. On the opposite, steady
state fluorescence occurs from the relaxed excited state,
that for class I chromophores is polar: large positive sol-
vatochromism is expected in fluorescence.

The interaction with a dipolar solvent can induce sym-
metry breaking also in chromophores that in non-polar
solvent have stable PES (i.e. in systems where electron–
vibration coupling is not strong enough to induce the
bistability). Indeed, as far as symmetry breaking is con-
cerned, the total relaxation energy (vibrational + sol-
vation contributions) is the key quantity: only when a
threshold value for the total relaxation energy is reached,
does symmetry-breaking occur. This implies that for sys-
tems with small εv, symmetry can be broken only for
large εor values (strongly polar solvents). In this case we
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Fig. 2 Isoenergy lines for the
a state calculated for a
chromophore belonging to
class I for a non-dipolar
solvent (left panel εor = 0)

and for a polar solvent (right
panel εor > 0). In the right
panel FR is fixed at its local
equilibrium value for the a
state
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Fig. 3 Fluorescence (left
panels) and absorption (right
panels) spectra calculated for
systems identified by crosses
in Fig. 1. Top panels: I region
(ρ = 0.13,

√
2t = 0.8,

ωv = 0.15, εv = 0.25 eV).
Bottom panels: II region
(ρ = 0.32,

√
2t = 0.8,

ωv = 0.15, εv = 0.25 eV).
Solvents of increasing polarity
are simulated by the εor
parameter (see figure legend,
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expect an important fluorescence solvatochromism only
for highly polar solvents.

Solvation and vibrational motions have very differ-
ent time-scales: vibrational coordinates (typically in the
mid infrared region) describe a truly quantum mechan-
ical motion, so that, depending on the height of the
barrier between the two minima, a fast interconversion
(tunneling) between the two symmetry-broken states
may restore the original symmetry (the false symme-
try-breaking case) [16] . Instead polar salvation involves
a very slow (actually overdamped) coordinate, that
behaves as a classical coordinate [1] and does not sup-
port tunneling. In other words, interconversion between
the two symmetry-broken minima is extremely slow in
polar solvents since it requires the motion along a slow
classical coordinate. Of course spectra in polar solvents
must be calculated by summing up the (Boltzmann-
weighted) contributions, from the different solute-sol-
vent configurations [10–12].

Chromophores with intermediate ρ (0.25–0.6) are not
expected to show any symmetry breaking for realis-
tic values of solvent polarity. For these systems indeed
one does not expect any important solvatochromism in
either electronic absorption or fluorescence spectra.
Figure 3 shows absorption and fluorescence spectra cal-
culated for a class I (top panels) and II (bottom panels)
chromophores, corresponding to the crosses in Fig. 1.
The qualitatively different spectroscopic behavior of the
two dyes is well apparent. For class I chromophores, the
effects of symmetry-breaking on fluorescence spectra
are shown in the top-left panel, where a strong solvato-
chromism is predicted, resulting from the dipolar nature
of the relaxed excited state. Solvent effects on absorp-
tion for the same chromophore (top-right panel) are
minor (symmetry is preserved for all states involved in
the absorption process) just leading to a solvent induced
inhomogeneous broadening. Bottom panels in Fig. 3
show electronic spectra calculated for a class II
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chromophore that does not undergo symmetry breaking
in any solvent: no solvatochromism is observed, since no
dipolar states are formed and inhomogeneous broaden-
ing itself is ineffective. No examples are shown of spectra
for class III chromophores: indeed electronic transitions
are located for this class of molecules at very low fre-
quencies, down to the IR region, due to the quasi degen-
eracy of the g and a states. To the best of our knowledge
there are no experimental examples of class III DAD
chromophores. This may be related to the instability
of the ground state towards charge-disproportionation,
that most probably reflects in a chemical instability of
the compound.

While class III systems are missing, several examples
are reported in the literature of quadrupolar
chromophores with an important fluorescence solvato-
chromism, that can therefore be classified as class I [2,
13,15,22,23]. Just as an example, we discuss results from
Ref. [15] relevant to a centrosymmetric DAD molecule
constituted by a central tetrafluorobenzene ring, pheny-
lene vinylene as conjugated spacers, and terminal amino
groups. For this chromophore a strong solvatochromism
is observed in fluorescence, whereas the absorption band
does not show any appreciable solvatochromism. Molec-
ular model parameters can be readily estimated from
spectroscopic data in non-polar solvent. The frequen-
cies of the maximum of the linear absorption and TPA
(ωga and ωge, respectively) fix ρ and

√
2t [and hence η,

see Eqs. (4), (5)]. The molecular parameters describing
vibrational coupling, ωv, εv, are fixed as to reproduce
the Franck–Condon progression in absorption or flu-
orescence spectra. Finally, a band-width (HWHM) is
associated to each transition as easily estimated from
experimental spectra, and µ0 is fixed to correctly repro-
duce the measured extinction coefficient. Relevant spec-
tra are reported in the top panel of Fig. 3, and the
TPA spectrum in a non-polar solvent is shown in Fig. 4,
together with the OPA spectrum. Calculated spectra are
in good agreement with experimental spectra in Ref.
[15]: not only transition energies, and hence fluores-
cence solvatochromism, are well reproduced, but also
band-shapes and absolute intensities of both OPA and
TPA spectra compare favorably with experimental data.

Data on chromophores belonging to class II are scanty.
Preliminary investigation suggests that some squaraine-
based dyes may belong to this class of molecules. Indeed
no major solvatochromic effects are reported for squa-
raines either in absorption or in fluorescence [12,24–27].
Large TPA cross sections are expected for dyes with
intermediate quadrupolar character, but care has to be
taken, since as ρ → 0.5 we expect TPA absorption
occurring just at twice the energy of the OPA: one-color
TPA spectra would then be masked by large OPA signal.
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Fig. 4 One- and two-photon absorption spectra calculated for
chromophore 1 in the apolar solvent

Symmetry-breaking (localization) in the excited state
has been extensively investigated in recent years [2,28–
34]. Specifically, the excited-state symmetry-breaking
predicted by our model for chromophores of class I
is in line with recent results in Ref. [2], where TD-DFT
calculations predict the appearance of symmetry-broken
solutions for the relaxed excited state of quadrupo-
lar and octupolar chromophores. Our work general-
izes these results for quadrupolar dyes, to account for
solvation effects and their consequences in linear and
nonlinear spectra. Even more importantly, the essential
state model adopted here to describe the basic physics
of quadrupolar chromophores leads to a general phase-
diagram for this class of molecules.

3 Intramolecular ET and electrostatic interactions:
clusters of push-pull chromophores

Results in the previous section demonstrate that envi-
ronmental effects can be very important in systems with
low energy ET degrees of freedom. Specifically, we have
demonstrated that the unspecific interaction of a non-
polar chromophore with a polar solvent, modeled as
a continuum dielectric medium, can induce symmetry
breaking in the ground or in the excited state. Even
more important environmental effects are expected in
dense systems where each chromophore, with its ET
degrees of freedom, interacts with similar surrounding
molecules. Here, as an example, we discuss linear arrays
of DA chromophores, an interesting class of polar and
polarizable molecules.

The electronic structure of push-pull chromophores
is conveniently described by the Mulliken model [6,7],
introducing two orthogonal basis states, |N〉 and |Z〉, cor-
responding to the neutral (DA) and zwitterionic
(D+A−) resonance structures. The two states are sepa-
rated by an energy 2η and mixed by a matrix element
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Fig. 5 The two one-dimensional arrays of chromophores discussed in this paper

−√
2t. The diagonalization of the relevant Hamiltonian

is trivial and was discussed by several authors [7]. The
resulting ground and excited states are:

|g〉 = √
1 − ρ |N〉 + √

ρ |Z〉
(9)

|e〉 = √
ρ |N〉 − √

1 − ρ |Z〉
where the ionicity ρ = (1 − η/

√
η2 + 2t2)/2 measures

the weight of |D+A−〉 in the ground state (gs), and is
therefore a measure of the molecular polarity. Following
Mulliken [6,7], we recognize that in the adopted basis
the dipole moment operator is dominated by µ0, the
dipole moment relevant to |Z〉, and, neglecting all other
contributions, we obtain all spectroscopically relevant
quantities as follows:

µG = 〈g| µ̂ |g〉 = µ0ρ

µE = 〈e| µ̂ |e〉 = µ0(1 − ρ)
(10)

µCT = 〈g| µ̂ |e〉 = µ0
√

ρ(1 − ρ)

–hωCT = εE − εG =
√

2t√
ρ(1 − ρ)

On this basis, closed expressions for static NLO
responses were written, that proved particularly use-
ful since they relate linear and non-linear optical sus-
ceptibilities to spectroscopic observables [8]. Optical
spectra of push–pull chromophores in solution can be
described based on the same model, provided that it
is extended to account for the coupling of electrons to
slow degrees of freedom, including molecular vibrations
and orientational degrees of freedom of polar solvents
[10,11,35]. Both couplings are important in the defini-
tion of optical and static responses. Here we describe
a model for clusters of interacting DA chromophores
without accounting for slow degrees of freedom. As a
matter of fact, in the adiabatic limit, vibrational cou-
pling can be easily accounted for via a renormalization
of the model parameters [36]. More generally, the non-
adiabatic calculations needed to account for vibrational
coupling in molecular clusters are memory and time-
consuming, and so far have only been carried out on
dimers of push–pull chromophores [37,38].

The Hamiltonian for a cluster of push-pull chromo-
phores only interacting through electrostatic forces
is [39]:

H =
∑

i

[
2ηρ̂i − √

2t (|Ni〉 〈Zi| + |Zi〉 〈Ni|)
]
+

∑
i,j>i

Vijρiρj

(11)

where i and j run on the N molecular sites, and ρ̂i =
|Zi〉 〈Zi| measures the amount of CT from D to A in the
ith molecules. The first term above corresponds to the
two-state Mulliken model for the isolated chromophore,
and the last term describes electrostatic interchromo-
phore interactions. Since the expectation value of ρ̂i

fully defines the charge distribution on the ith chromo-
phore, the operator representing the electrostatic inter-
action between i and j chromophores is proportional to
ρ̂iρ̂j through a proportionality constant, Vij, measuring
the interaction energy between the two fully zwitter-
ionic (D+A−) molecules. Of course several models are
possible for Vij, including dipolar or multipolar approx-
imations, possibly accounting for electrostatic screen-
ing. The Hamiltonian above is general, here we apply
it to describe two one-dimensional (1D) arrays of mol-
ecules as sketched in Fig. 5. Moreover, to estimate Vij,
we describe the zwitterionic molecule as a rigid rod of
length l with the positive and negative charges located at
the two ends. This defines the basic unit of electrostatic
energy: v = e2/l. In the following we discuss unscreened
interactions and introduce the dimensionless inverse in-
termolecular distance, w = l/r, where r is the distance
between the chromophores. For B-clusters the condi-
tion w < 1 applies. For any cluster Vij interactions can
be defined in terms of v and w parameters [39].

Intermolecular electrostatic interactions affect the
molecular polarity. A molecule inside a cluster feels the
electric field generated by the surrounding molecules.
In clusters with repulsive interchromphore interactions
(A in Fig. 5) each molecule feels an environmental elec-
tric field that opposes to the charge separation on each
molecule, and the average polarity ρ on the molecular
sites decreases. Just the opposite occurs for lattices with
attractive interactions (B in Fig. 5), where one expects



922 Theor Chem Acc (2007) 117:915–931

0 2
w

0

0.5

1
ρ

0.5 1

A B

η = -2

-1

1
2

η = 2

-1

1

-2

Fig. 6 The polarity of chromophores calculated as a function of
w for two 1D arrays of 16 chromophores with v = 2 and the η

marked in the figure. Left panel: repulsive interactions (A geom-
etry); right panel: attractive interactions (B geometry)

an increase of ρ with intermolecular interactions. This
mean-field (mf) description catches most of the gs phys-
ics of molecular aggregates, and, specifically, allows one
to appreciate the cooperative self-consistent interaction
between each molecule and its environment [39].

Figure 6 shows the variation of the molecular polarity
with the inverse intermolecular distance (w) for A and
B clusters with different η. For the repulsive A lattice
the most interesting results are obtained for negative
η for which the isolated molecules at w = 0 are in a
(zwitter)ionic (I) gs, with ρ > 0.5. In that case in fact
simply putting the molecules together at a short enough
distance turns all the molecule to a neutral (N) gs with
ρ < 0.5.

N and I chromophores have qualitatively different
properties and behavior, so intermolecular interactions
can profoundly alter the material properties. Of course,
for the attractive B-lattice the opposite occurs, and the
most interesting case is that of chromophores with pos-
itive η. In that case in fact the N isolated molecule can
turn to I in the lattice. Attractive lattices are even more
interesting since for large enough v the transition from a
N to an I gs becomes discontinuous for suitable η values,
as shown in the B-panel of Fig. 6 for η = 2. The observa-
tion of a discontinuous crossover is the extreme mani-
festation of cooperative behavior: two large competing
interactions, η favoring the N gs, and the intermolecular
interactions, favoring the I gs, lead to competing ground
states whose energies cross at some special point in the
parameter space giving rise to a discontinuous behavior.

The properties of the material in the proximity of
the discontinuous N–I crossover are very interesting
and unusual [40]. Focusing on the optical excitation
with the largest oscillator strength (that always coin-
cides with the lowest excitation, E1 in B-lattices) we
calculate the number of |Z〉 molecules that are cre-
ated upon photoexcitation, or, equivalently, the number
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∆
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∆
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Fig. 7 Upper panels: number of zwitterionic species created upon
photoexcitation (
) vs w. Dotted lines mark the boundary of the
|
 | < 1 region allowed according to the exciton model. Lower
panels: ρ(w) curves for the same parameters as for the upper
panels. Results are obtained for a 16-site B cluster. Left panels:
v = 1, η = 1; right panels: v = 2, η = 2.

of electrons that are transferred from D to A: 
 =
N

(〈E1| ρ̂ |E1〉 − 〈G| ρ̂ |G〉) (negative 
 means that elec-
trons are transferred from A− to D+). In the familiar
excitonic approximation [41] the absorption of a photon
creates a single excitation, switching a molecule from the
local ground to the local excited state: in this approxima-
tion 
 = 1−2ρ and the number of transferred electrons
upon photoexcitation ranges from 1 for largely N lattices
(ρ → 0) to −1 for largely I lattices (ρ → 1). The upper
panels in Fig. 7 show the evolution with w of 
, cal-
culated for a 16-site B lattices with a continuous and a
discontinuous neutral to zwitterionic interface (left and
right panels, respectively, cf. bottom panels, where the
relevant ρ(w) curves are shown). The dotted lines mark
the extreme limits of the excitonic approximation for

, i.e. |
| < 1. The simple excitonic result is spoiled
near the charge crossover: deviations are minor near a
continuous interface (left panels), but become impor-
tant near a discontinuous interface: for the parameters
in Fig. 7, up to six electrons are transferred at a time
upon absorption of a single photon.

A detailed analysis of the states involved in absorp-
tion leads to a very interesting picture [40]. Upon absorp-
tion of a single photon in fact several I chromophores
are created on a background of N molecules or vice
versa, and these molecules with reversed ionicity cluster
together forming a droplet of I (N) molecules on a N (I)
background. Multi-electron transfer has already been
discussed in different contexts, but usually describes
a cascading effect related to the relaxation of some
slow degree of freedom following a more traditional
optical excitation [42,43]. Here instead multi-electron
transfer represents the primary photoexcitation event:
the absorption of a single photon directly drives the
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Fig. 8 Static polarizability and hyperpolarizabilities per chromo-
phore calculated for clusters of 16 push–pull chromophores with
repulsive (a) and attractive (b) interactions and v = e2/l = 2.
Results are shown for the selected η marked in the figure and are
obtained by varying w as to obtain the ρ values reported in the
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relevant to the isolated push–pull chromophore: these curves are
of course equal in the left and right panels, their different appear-
ance is due to the largely different scales needed to show in the
same panel results for the isolated molecule and for the cluster.

concerted motion of several electrons residing in sev-
eral nearby molecules.

Important effects from supramolecular interactions
are also expected in NLO responses [30]. Figure 6 shows
very clearly that the polarity of a chromophore is
strongly dependent on its environment, and, specifically,
on the geometry of the cluster, and on intermolecular
distances. It is known that linear and non-linear polar-
izabilities of isolated push–pull chromophores are fixed
by ρ [8]. So, when considering clusters of push-pull chro-
mophores one expects that their susceptibilities vary
with the cluster geometry and intermolecular distance,
due to the variation of ρ. Indeed the situation is much
more complex, with important cooperative and collec-
tive contributions to the cluster susceptibility. This is
clearly demonstrated by data in Fig. 8 where the linear
polarizability α and the first and second hyper-polariz-
abilities, β and γ , respectively, are shown as a function
of ρ. Results are obtained for A (repulsive interactions)
and B (attractive interactions) with v = e2/l = 2 and
selected η values, while varying w as to span a large
interval of ρ (cf. Fig. 6). The dashed lines in the same

figure show the linear and non-linear susceptibilities of
the isolated chromophore, that only depend on ρ [8].
The deviations of the cluster susceptibilities from the
result relevant to the isolated chromophore with the
same polarity measure cooperative and collective effects
that derive from local-field corrections, as well as from
the excitonic and ultraexcitonic mixing of excited states.
The role of the different interactions has been recently
discussed [3], here we underline that cooperative and
collective contributions to the susceptibilities are very
large and rapidly increase with the order of non-linear-
ity. In A geometry the cluster response is largely sup-
pressed with respect to the molecular response, whereas
in B geometry a very large amplification is observed.
A well known result for the isolated chromophore is the
symmetry of the responses around ρ = 0.5, the so-called
cyanine limit. This result is spoiled by electrostatic inter-
actions in the cluster.

Materials based on push–pull chromophores have
negligible intermolecular overlap, and we have discussed
here a model where electrons are fully localized in the
molecular units. In spite of that, electrostatic intermo-
lecular interactions make ET in clusters qualitatively
different from ET in the isolated chromophore. In the
quest for materials with optimized properties it is then
extremely important to properly understand and exploit
supramolecular structure–function relationships. This is
a challenging task, due to the need to account for com-
plex cooperative and collective phenomena, but it may
also be a largely rewarding job as it offers an addi-
tional handle to tune, and possibly amplify, the material
response.

4 Extended systems and electrostatic interactions:
charge-transfer salts with a mixed stack motif

Charge-transfer (CT) crystals have mixed face-to-face
stacks of planar π-electron donors and acceptors as
sketched in Fig. 9. Intermolecular overlap is negligible
between stacks, but not within stacks where π–π over-
lap is indicated by less than van der Waals separation
between D and A [45]. The gs consequently has frac-
tional charges ρ at D and –ρ at A sites [45]. Just as
an example, in the prototypical material, TTF-CA, at
ambient conditions about 0.2 electrons are transferred
on average from the donor (tetrathiafulvalene, TTF) to
the acceptor (chloranil, CA) [4]. We notice that while
referring to different physical systems with respect to
those described in the previous section, the parameter ρ

corresponds to the same physical quantity. Specifically
in both systems ρ measures the fractional charge on D/A
sites: in push-pull chromophores the sites correspond to
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Fig. 9 A schematic view of mixed regular and dimerized stacks

different chemical groups in the same molecule, in CT
salts to different molecular units. In both cases the frac-
tional ionicity is a direct consequence of ET.

As seen in Fig. 9, a regular stack of centrosymmetric
molecules is not polar due to the inversion center located
at each site, as in fact occurs in the actual structures.
The inversion center is lost on dimerization and the gs
becomes ferroelectric if dimerization is in the same sense
everywhere. Much as it occurs in attractive lattices in the
previous section, Madelung interactions favor charge
separation, and a large variation of ρ can be induced by
tuning intermolecular distances. At T ∼ 81 K, TTF-CA
undergoes a discontinuous phase transition to an I phase
with ρ ∼ 0.6 [4]. Other systems with N–I transitions are
known [4]: both continuous and discontinuous transi-
tions have been observed, and stack dimerization typ-
ically accompanies the charge crossover. In a CT crys-
tal with disordered site energies, due to orientational
disorder of the polar D, however, the ionic stack does
not dimerize [46] . N–I transitions can be induced by
temperature, pressure or by absorption of light and rep-
resent a complex and interesting phenomenon [47,48].

Mixed stack CT salts share some physics with
B-lattices of push–pull chromophores discussed in the
previous section. Indeed one of the first models for the
discontinuous N–I transition in CT salts [49] was based
on the description of the stack as a collection of DA
pairs only interacting via electrostatic interactions lead-
ing exactly to the same Hamiltonian as discussed in the
previous section. More realistic models for the stack
must account for delocalized electrons in 1D [50]. More-
over, in order to properly describe structural instabili-
ties, models for CT salts must also include the coupling
between electrons and lattice phonons [51,52]. A mini-
mal model for the gs of CT salts with a mixed stack motif
is represented by the following Hamiltonian [51,52]:

H = −
∑
i,σ

[
1 + (−1)iδ

](
c+

i,σ ci+1,σ + H.c.
)

+�
∑
i,σ

(−1)ic+
i,σ ci,σ + V

∑
i

ρiρi+1 + N
2εd

δ2 (12)

where c+
i,σ creates an electron with spin σ on the ith

site and the number operator, n̂i,σ = c+
i,σ ci,σ is restricted

to 0 or 1 on A sites (i even) and to 1 or 2 on D sites
(i odd). The first term is the Hückel model for elec-
tron transfer between neighbors in the stack; we take
t = −〈DA|H|D+A−〉 = 1 as the energy unit, and ti =
[1 − δ(−1)i] for dimerized stacks. The second term has
site energies −� at D and +� at A. The third term is the
nearest neighbor Coulomb attraction V that in mean
field (mf) adds −Vρ to �; the charge operator ρi is 2 −ni

at D sites and −ni at A sites. Since the full electrostatic
(Madelung) energy of the crystal leads to similar modi-
fication of � in mf theory, at this level V represents any
Coulomb or vibronic interaction that modifies sites ener-
gies. The last term in the above Hamiltonian measures
the bare elastic energy associated with the dimerization
mode, with 1/εd measuring the lattice stiffness. The rigid
lattice has εd = 0.

For � >> V the Hamiltonian in Eq. (12) describes
an almost N lattice (ρ → 0) of donors and acceptors,
whereas for � << V an almost I lattice of spin 1/2 rad-
ical ions is obtained (ρ → 1) [50]. The N–I crossover is
continuous for small V, but becomes discontinuous at
large V [53]. The N and I phases are qualitatively differ-
ent, with the I lattice being unconditionally unstable
to dimerization (spin-Peierls transition [55]). The N–I
crossover can consequently be identified precisely even
for continuous ρ in the rigid regular stack [53,54]. The
possible occurrence of two instabilities leads to a com-
plex phase diagram: soft lattices dimerize in the N phase
before reaching the N–I crossover. Harder lattices with
sizeable V instead undergo a discontinuous transition
from a N regular to an I dimerized phase. Both kinds of
transitions have been observed [4].

Figure 10 summarizes results obtained on a system
with large enough V and small enough εd as to undergo
to a discontinuous charge crossover, as evidenced by
the ρ(�) curve in the rightmost panel. The middle panel
in the same figure shows the dimerization amplitude:
the stack is regular in the N regime and dimerizes in
the I phase mimicking TTF-CA. The discontinuous N–I
crossover in Fig. 10 closely resembles the discontinuous
crossover described in the previous section for the lin-
ear cluster of push–pull chromophores, and, as already
noticed, the two systems indeed share some physics.
However the physics of the N–I transition in CT salts
is much more complex than in push–pull chromophores
since electrons are now truly delocalized in 1D, and a
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Fig. 10 The N–I transition for a CT salt described by the Hamil-
tonian in Eq. (12) with V = 3, and εd = 0.28. Results are shown
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The right panel shows the number of D+A− pairs created upon
photoexcitation (results refer to the optical transition with the
highest intensity). The two dotted lines in this panel at 
 = ±1
mark the limits for 
 in the excitonic approximation

lattice instability accompanies the charge instability. In
spite of that, the intriguing phenomenon of multi-elec-
tron transfer survives in CT salts, as shown in the right-
most panel of Fig. 10, where the number of D+A− pairs
created on photoexcitation is reported. For the param-
eters in Fig. 10, that apply to TTF-CA [52], we find that
at the N–I interface the absorption of a single photon
moves as many as four electrons at a time. The analysis
of the relevant wavefunction demonstrates that, much as
it occurs for clusters of push–pull chromophores, photo-
excitation generates droplets of I states in an otherwise
N background (or vice versa). These droplets, created
upon vertical phoexcitation, can act as nucleation cen-
ters for the photoinduced NIT and can explain the high
quantum yield of the process close to the thermally-
induced transition [43].

Not only optical spectra, but also gs properties, includ-
ing linear and non-linear polarizabilities show unusual
behavior at the charge crossover. Here we discuss the
linear polarizability, that, being related to the static
dielectric constant, has important experimental impli-
cations. The static polarizability is the first derivative of
the polarization on the applied electric field, α = dP/dF,
and can be calculated in finite-field approaches from the
P(F) dependence, or, in sum-over states approaches as
the sum over all excited states of the squared transition
dipole moments over the relevant excitation frequencies
[56].

The calculation of P(F) and hence of α is straight-
forward in principle in systems with localized electrons,
like the clusters of push–pull chromophores described
in the previous section. In that case in fact the lin-
ear chain can be naturally partitioned in non-overlap-
ping unit cells. The dipole moment operator M̂ is then
defined as the sum of dipole moments on each cell and
enters the F dependent Hamiltonian as −FM̂, allowing
the calculation of F-dependent properties. Numerical

F-derivatives of P or its perturbative expansion in sum
over state approaches are both viable and lead to equiv-
alent results for α. The situation is more complex in
extended systems where delocalized electrons make the
partitioning of the system in unit cells non-unique. The
Berry-phase definition of P for extended systems, or,
equivalently for finite systems with periodic boundary
conditions (PBC), solves the problem of the calculation
of P(F = 0) [57], but leaves open the calculation of
F-dependent properties.

In fact, the lack of an explicit definition for the electric
dipole moment operator in PBC systems, hinders both
the definition of the F-dependent Hamiltonian H(F)

and the calculation of transition dipole moments enter-
ing sum over states expressions for the susceptibilities.
We have recently solved this problem by introducing an
induced dipole operator [52]:


M̂ = N
2π

Im
exp(2πiM̂/N)

Z(F)
(13)

where M̂ = ∑
i riρi is the traditional dipole moment

defined for the open chain and N/2 is the number of
unit cells, and

Z(F) =
〈

G(F)

∣∣∣∣∣exp

(
2πiM̂

N

)∣∣∣∣∣ G(F)

〉
(14)

where |G(F)〉 is the gs of H(F). 
M̂ enters the defini-
tion of an effective Hamiltonian H(F) = H − F
M̂,
whose diagonalization is equivalent to the minimization
of the energy functional E(F, G(F))=〈G(F)| H |G(F)〉−
NF Im(ln(Z(F))/2π , where H is the unperturbed Ham-
iltonian. The procedure is formally exact when working
on a real space basis where M̂ is diagonal. Moreover,
except for the linear polarizability, which requires Z (0)
in Eq. (13), |G(F)〉 must be found iteratively [52].
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Triangle and crosses refer to N = 12 and 14, respectively. The
dashed line marks in each panel the location of the N–I transition
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Along these lines we have demonstrated that the lin-
ear polarizability calculated for the rigid chain diverges
at the continuous NIT of the regular chain with V = 0.
The dashed line in Fig. 11 locates the electronic tran-
sition of the rigid lattice, where the gs is metallic [50].
The divergence is however suppressed by dimerization
in soft lattices with εd > 0 as shown in Fig. 11, where the
kink in α marks the Peierls transition.

So far we have discussed the linear electronic polariz-
ability calculated as the first derivative of P on the elec-
tric field while keeping the nuclei at their equilibrium
location. This electronic polarizability does not exhaust
the material polarizability. In fact due to the coupling
between electronic and lattice degrees of freedom we
expect a vibrational contribution to α, with [36,37]:

α = ∂P
∂F

+ ∂P
∂δ

∂δ

∂F
= αel + αvib (15)

The vibrational contribution to the polarizability is gov-
erned by the lattice vibration corresponding to the
dimerization motion, as described by δ. Specifically αvib
goes with the IR intensity of the dimerization mode
divided by its frequency. Close to the charge-instabil-
ity, δ oscillations induce large fluxes of electronic charge
from D to A sites and vice versa leading to gigantic
IR intensity of the Peierls mode near the N–I interface
[36]. Moreover, the Peierls mode drives the dimeriza-
tion instability, and its frequency softens in the prox-
imity of the lattice instability. As a consequence, the
vibrational contribution to the polarizability is very large
and actually dominates over the electronic contribution
for systems close to the charge and structural instability
[51,52].

Both αel and αvib contribute to the static dielectric
constant, according to

κ = κ∞ + αel + αvib

ε0v0
(16)

where SI units are adopted, v0 is the volume per site, ε0
is the vacuum permittivity constant, and κ∞ ≈ 3 is the
usual contribution to the dielectric constant from molec-
ular excited states that are not being modeled. Adopting
typical lattice parameters for TTF-CA we obtain the κ

values reported in a logarithmic scale in the left panels
of Fig. 12. A sharp peak in κ is observed with abso-
lute values of the order of 100–1,000, in agreement with
experimental data [47,48]. Specifically, the figure shows
results obtained for V = 0 and two different εd values.
The harder lattice in the left panels dimerizes at ρ ∼ 0.4,
in the near proximity of the charge instability: the cou-
pling between electronic and vibrational degrees of free-
dom is very large here and the resulting κ is very large.
The softer lattice dimerizes far in the neutral regime,
at ρ ∼ 0.25, where charge fluctuations induced by δ

are smaller: the calculated peak in the dielectric con-
stant is reduced by almost one order of magnitude with
respect to the previous case. In both cases however, κ

is dominated by the vibrational contribution: the result
obtained by neglecting αvib in Eq. (16) is shown as dot-
ted lines in Fig. 12 and represents a negligible fraction
of the dielectric constant. Results for systems with finite
and large V as to describe discontinuous N–I transitions
have already been discussed [52] . Here we just notice
that V = 0 results are enough to describe the behav-
ior of a system with finite V in the mf approximation.
Within mf in fact V enters the Hamiltonian via a renor-
malization of � → � − Vρ. For V > (dρ/d�)−1/2 ≈ 2.5
the N–I transition becomes discontinuous and regions
of intermediate ρ are no more accessible to the system.
This leads to a reduction of the κ peak that, for εd = 0.28
reduces from ∼ 1000 at V = 0 to ∼150 at V = 3.

5 Electron transport in molecular junctions:
a real-space view

ET is the basic process for electron transport in molecu-
lar junctions. In spectroscopic measurements ET implies
the hop of one (or more) electron from a D to an A site,
to create an excited state that eventually relaxes back
to equilibrium. In molecular electronic devices instead
a continuous flux of charges must be maintained: to sus-
tain a direct current (DC) the system must be prepared
in a non-equilibrium steady-state. The most popular
approaches to describe molecular junctions are based
on the Bütticker–Landauer picture [58,59]: the junc-
tion, i.e. the molecule possibly including atoms from the
contact region, is embedded between two semi-infinite
electrodes working as source and sink for the electrons.
The electrical flux is driven by imposing a finite potential
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Fig. 12 The dimerization
amplitude, the ionicity and
the logarithm of the static
dielectric constant, as a
function of � calculated for
the Hamiltonian in Eq. (12)
with V = 0 and two different
εd. Circles refer to N = 14,
crosses to N = 16. Dotted
lines in the bottom panels
show the logarithm of the
dielectric constant obtained
by neglecting the vibrational
contribution to α
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drop between the two electrodes to enforce a net flux of
charges from the high to the low potential region.

This voltage constrained (VC) approach proved very
successful to describe mesoscopic and nanoscopic junc-
tions and has been quite naturally combined with
detailed first-principles models for the molecular struc-
ture and the contact region [5,60]. However, working
with infinite reservoirs poses some fundamental physical
problems [61–65], among which the need to account,
in the same quantum mechanical system, for two fami-
lies of electrons with different chemical potential, and,
henceforth, the need to rely on one-electron models for
the electronic structure.

Any reference to reservoirs is avoided in current
constrained (CC) approaches, that have been devel-
oped to describe transport in both meso- and molecular
junctions [61,62,66–69]. Closed boundary conditions are
imposed on the system, and a current is forced through
the circuit, via some physical or mathematical device. CC
and VC approaches are therefore complementary and,
in a sense, describe two different experiments, where
either the current or the potential drop is fixed from
the outset [69]. The Lagrange multipliers technique rep-
resents an interesting mathematical device to drive a
molecule in a non-equilibrium state as to force a current
through it. This technique has a long history in the field
of mesoscopic transport [69] and has been more recently
adopted to describe molecular junctions [62,68].

Whereas CC strategies are promising, two main prob-
lems remain to be solved: (1) the calculation of the
potential drop needed to sustain the current, and (2)
the definition of the potential profile in the molecule. To
solve the first problem we take advantage from energy
conservation as described by the Joule law: in a system
with fixed current, the potential drop can be obtained
from the electrical work done on the junction to sustain
the current. Charge-conservation is the key to solve the
second problem: enforcing the continuity constraint for
DC transport leads to the definition of the potential pro-
file along the junction. The approach is general: here we
sketch its application to linear Hubbard chains.

To start with consider a diatomic Hubbard molecule,
whose Hamiltonian H0 is defined by U, t, and the differ-
ence of on-site energies: 2
 = ε2 − ε1. The eigenstates
of H0 do not sustain any current. To impose a finite
steady-state current the molecule is prepared in a non-
equilibrium state |G(λ)〉, defined as the ground state of
the Hamiltonian [68]:

H(λ) = H0 − λĵ (17)

where ĵ = −it
∑

σ

(
c+

1σ
c2σ − H.c.

)
measures the current

flowing through the bond, and ciσ annihilates an elec-
tron with spin σ on the i-site. Here and in the following
–h and the electronic charge are set to 1, and t is taken as
the energy unit. The field λ coupled to the current enters
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the Hamiltonian above as a Lagrange multiplier, whose
value is fixed by the requirement that a finite current
J = 〈G(λ)| ĵ |G(λ)〉 flows through the molecule [68].

In the absence of relaxation |G(λ)〉 would be a stable
state and the current will flow with no resistance. Relax-
ation instead drives the molecule towards the unper-
turbed equilibrium state G(0) so that work must be
spent to maintain the molecule in the current-carrying
state. Of course, to grant for steady state conditions, the
device must dissipate exactly the same amount of energy.
The Joule law defines the relation between the electri-
cal power spent on the molecule, W, and the potential
drop needed to sustain the current, W = JV, under-
lining the fundamental relation between resistance and
relaxation [64].

Following standard approaches in molecular spec-
troscopy relaxation is described introducing the density
matrix written on the basis of the eigenstates |k〉 of H(0)

[1]. The equilibrium density matrix for the molecule in
the absence of the driving field, σ0, is a diagonal matrix
whose elements are fixed by the Boltzmann distribution.
Here we work in the low temperature limit, so that only
the lowest eigenstate, |G(0)〉 = |g〉 is populated. In non-
degenerate systems, the current operator is off-diagonal,
so that σ (λ), the density matrix for the current-carrying
state, is non-diagonal: finite coherences (i.e. off-diagonal
elements of the density matrix) are needed to describe a
current. The dynamical equation for σ is: σ̇ = −i[H, σ ]+
σ̇R, where σ̇R accounts for relaxation phenomena, as due
to the coupling of the molecule to the bath, i.e. to all
degrees of freedom not explicitly described by H. Diag-
onal elements of σ̇R describe depopulation, i.e. inelastic
scattering events that dissipate energy to the bath. We
adopt a phenomenological model for depopulation [1],
and set (σ̇R)kk = ∑

m γkmσmm − ∑
m γmkσkk, where γkm

measures the probability of the transition from m to k.
In the low-temperature limit, only downwards transi-
tions occur: γkm = 0 for k > m. �km, the inverse life-
time for coherences, is defined by (σ̇R)km = −�kmσkm,

and has both depopulation and dephasing contributions:
�km = (

γkk + γmm
)
/2 + γ ′

km, where γkk = ∑
m 	=k γmk is

the inverse lifetime of state k as due to depopulation,
whereas γ ′

km describes pure dephasing, i.e. the loss of
coherence due to purely elastic scattering [1].

Relaxation dynamics is affected by the electrical con-
tacts. This is easily understood in single electron pic-
tures: electrons are strongly scattered at the junctions
and neither the elastic nor the inelastic lifetime can be
longer than the time required to the electron to cross
the junction [63]. For correlated electrons the effects of
leads on relevant lifetimes are more subtle, and a micro-
scopic model is still lacking. However, even in the limit
of very weak coupling, when electrons hardly hop from
the molecule to the leads, the very same presence of a
metallic surface close to the molecule opens new energy
exchange channels that decrease the inelastic lifetime. In
the case of strong coupling, the blurring of the discrete
molecular eigenstates as due to their mixing with the
continuum of states of the metallic leads is responsible
for large dephasing rates.

The electrical work, W = −λTr
(
σ̇Rĵ

)
measures the

electrical power spent on the molecule to sustain the
current. Since ĵ is an off-diagonal operator, only off-diag-
onal elements of σ ′

R enter W. Therefore V and hence the
molecular resistance are governed by the total lifetime
for coherences, �km quite irrespective of its partition-
ing into elastic and inelastic scattering (dephasing and
depopulation, respectively) contributions [64].

Figure 13 shows the characteristic curves calculated
for a diatomic molecule with �km = 1. In the left panel
results are shown for the symmetric, 
 = 0, system. As
expected, electronic correlations decrease the conduc-
tivity. The curves in the right panel for an asymmetric
system (
 	= 0) show instead an increase of the low-
voltage conductivity with increasing U. This result is
related to the minimum excitation gap, and hence the
maximum conductance, of the system with U = 2
.
The asymmetric diatomic molecule represents a minimal
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model for the Aviram-Ratner rectifier [70], but the char-
acteristic curves in the right panel of Fig. 13 are sym-
metric, and do not support rectification. In agreement
with recent results, rectification in asymmetric molecules
is most probably due to contacts [60], or to the cou-
pling between electrons and vibrational or conforma-
tional degrees of freedom [71].

An important result may be found for the symmetric
two-site system with a single electron. Via a perturbative
expansion of the current, a very simple expression for
the zero bias conductivity is found: G0 = t/�. Since the
electronic lifetime, �, cannot be longer than the time
required to the electron to hop between the two sites
[63], we can set � ≥ 2π t, regaining the standard result
for the conductivity of a single electron: G0 = 2π (in
units with –h = e = 1).

To extend the discussion to linear polyatomic chain
an important point must be appreciated: DC transport
requires charge conservation both at the global and at
the local level. In other terms, during transport charge
must not accumulate. To enforce the continuity con-
straint one must control the current flowing through
every bond in such a way that in a linear chain exactly
the same amount of current flows through each bond.
To such an aim the following Hamiltonian is introduced:

H = H0 −
∑

i

λiĵi (18)

where i runs on the bonds and the Lagrange multipliers,
λi, are fixed by imposing ji = 〈G| ĵi |G〉 = J, independent
of i. The electrical work spent on the molecule:

W = −
∑

i

λiTr
(

ĵiσ̇R

)
(19)

naturally separates into bond-contributions, Wi, and the
total potential drop across the molecule, V = W/J, can
be written as the sum of the potential drops across each
bond, Vi = Wi/J, leading in general to non-linear poten-
tial profiles. The relevant information is conveniently
conveyed in terms of bond-resistances: Ri = (∂J/∂Vi)

−1

[64].
Figure 14 shows the results obtained for a three-site

three-electron molecule with U = 4, �km = 1, equal
on-site energies and different t. The left panel shows
the characteristic J(V) curve, and continuous lines in
the right panel report the total resistance R, and the
two bond resistances, R1 and R2. As a direct conse-
quence of the continuity constraint, the total resistance
R = (∂J/∂V)−1 is the sum of the two bond-resistances,
leading to a suggestive description of the linear mol-
ecule as an electrical circuit, with resistances associ-
ated with chemical bonds joint in series at the atomic
sites. Whereas this picture is useful, the concept of

-3 0 3
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-1

0

1

J

-3 0 3

V

0

4

R
R

R
2R

1
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Fig. 14 Left panel: characteristic curve for the three-site three-
electron Hubbard molecule sketched in the figure, with U = 4,
constant on-site energies, t1 = 1.2, t2 = 0.8, �km = 1. Right panel:
total (R) and bond-resistances (R1 and R2). For bond resistances
continuous and dashed lines show results obtained by allowing the
current to flow through the whole molecule, and through a single
bond, respectively

bond-resistance should be considered with care in
molecular circuits. At variance with standard conduc-
tors, in fact, the resistance of a bond depends not only
on the circuit (the molecule) it is inserted in, but also on
the way the resistance is measured. In fact the resistance
of each bond can also be defined by forcing the current
only through the specific bond (i.e. by setting a single
λi 	= 0 in the Hamiltonian in Eq. (18)). Dashed lines in
Fig. 14 show corresponding results. At zero bias, for each
bond the two kinds of resistance do coincide (as it can
also be proved by perturbative arguments) so that the
molecular resistance is the sum of the bond-resistances
measured by flowing current through each bond. This
additive Ohmic behavior is however spoiled at finite bias
(cf. Fig. 14), or even at zero bias when allowing for more
complex relaxation matrices with non-uniform �km.

Multiple Lagrange multipliers account for non-linear
potential profiles in polyatomic molecules: modeling the
potential profile as a linear function is a poor approxima-
tion for extended molecules [72]. Just as an example, in
a four-site four-electron junction with exactly the same
ti = 1 on each bond, the central bond is much weaker
than the two external bonds leading to a ratio of the
zero-bias resistances, R2/R1, ranging from 10 to 2 as U
increases from 0 to 4. Largely non-linear potential pro-
files are therefore expected even for highly idealized
molecular structures.

Current and voltage constrained approaches to
molecular junctions offer complementary views of the
same phenomenon and, having each one its merits and
drawbacks, both should be carefully explored to reach a
comprehensive representation of the complex physics of
molecular transport. One of the most appealing features
of CC approaches is the possibility to work with corre-
lated electrons. Here we fully exploit this opportunity
combining the CC description of transport with a real-
space description of the molecule. The resulting picture
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is strongly rooted in the concept of chemical bond: chem-
ical bonds offer channels for electronic transport, i.e.
the current flows through the bonds. This view should
be contrasted with the more familiar picture of elec-
trons flowing through molecular orbitals, as resulting
from the typically one-electron description of molecular
junctions adopted in VC approaches. Neither picture is
more fundamental or more correct than the other: they
correspond and actually stem from the two complemen-
tary and equally fundamental descriptions of molecular
binding as based on the molecular orbital or valence
bond descriptions [73]. Both are important and should
be known to fully appreciate the complex realm of
molecular physics.

6 Conclusions

In this paper we have described several classes of mate-
rials and systems where ET plays an important role. We
have focused attention on the spectroscopic behavior of
materials with low-energy charge-transfer excitations,
and on electron transport in molecular junctions. As
for spectroscopy we have underlined the main role of
environmental interactions. Non-polar DAD chromo-
phores, extensively studied for TPA applications, show
a strongly solvatochromic fluorescence, whose origin we
ascribe to the symmetry-breaking induced in the excited
states by unspecific interactions with the polar solvents.
The model is general and applies to other classes of
molecules as well.

Collective and cooperative behavior appears as a con-
sequence of the electrostatic interactions between ET
processes occurring at different location in materials like
clusters of DA chromophores and CT crystals. Impor-
tant collective and cooperative phenomena show up
clearly in static susceptibilities of clusters of push–pull
chromophores. Classical electrostatic intermolecular
interactions lead to a suppression of the optical suscep-
tibilities in the repulsive A-lattice and to an amplifica-
tion in the attractive B-lattice in Fig. 5, with effects that
increase fast with the order of non-linearity.

In CT salts it is more difficult to single out the role of
electrostatic interactions, due to the complex interplay
among delocalization effects, electrostatic 3D interac-
tions, and lattice phonons. The electronic contribution to
the static linear polarizability in CT salts is enormously
amplified by delocalization: in fact, even in the absence
of electrostatic interactions, the polarizability diverges
at the continuous NIT of the rigid lattice. However in
soft lattices electron–phonon coupling drives the lattice
dimerization, reducing the electronic delocalization and
strongly suppressing the electronic contribution to the

polarizability. At the same time, a vibrational contribu-
tion adds to the polarizability, becoming largely domi-
nant over the electronic contribution in the proximity of
the dimerization phase transition.

Both in systems with electrons localized within dis-
crete molecular units and in materials with delocal-
ized electrons in 1D, electrostatic interactions can lead
to the occurrence of a discontinuous charge crossover,
and hence to the appearance of bistable behavior. In
the proximity of discontinuous crossovers cooperative
and collective phenomena dominate and multielectron
transfer represents the most striking demonstration of
that. The possibility to induce a concerted motion of
several electrons upon absorption of a single photon
contrasts sharply with the common excitonic description
of optical excitations in molecular materials and opens
interesting and new perspectives for the understanding
of photoinduced phase transitions and for applications
in photoconversion devices.

A current constrained approach is proposed to
describe electron-transport in real-space description of
molecular junctions. Along these lines a picture emerges
where electron transport occurs through chemical bonds.
This picture is complementary to the more common
picture emerging from voltage constrained approaches
that describe electrons flowing through molecular orbi-
tals. Molecular resistance is quite naturally ascribed to
the relaxation of molecular states as due to both elas-
tic and inelastic scattering (i.e. depopulation and deph-
asing). Relaxation is just the connection between the
diverse fields of molecular transport and molecular spec-
troscopy: here we have described relaxation based on
a phenomenological model borrowed from molecular
spectroscopy. At the same time, specific features of
molecular junctions must be recognized: the continuity
constraint for steady-state DC current has no counter-
part in molecular spectroscopy and is responsible for the
appearance of non-linear potential profiles in extended
molecules, in sharp contrast with the spatially homoge-
neous electric fields of molecular spectroscopy.
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